This research provides a comprehensive survey on the question, are we hungry for 3D LiDAR data for semantic segmentation? The studies are conducted at three levels. First, a broad review to the main 3D LiDAR datasets is conducted, followed by a statistical analysis on three representative datasets to gain an in-depth view on the datasets' size, diversity and quality, which are the critical factors in learning deep models. Second, an organized survey of 3D semantic segmentation methods is given with a focus on the mainstream of the latest research trend using deep learning techniques, followed by a systematic survey to the existing efforts to solve the data hunger problem. Finally, an insightful discussion of the remaining problems on both methodological and datasets' viewpoints, and the open questions on dataset bias, domain and semantic gap are given, leading to potential topics in future works.
A brief explanation of Contrastive Learning and Contrastive Multiview Coding paper
3D LiDAR semantic segmentation is a pivotal task that is widely involved in many applications, such as autonomous driving and robotics. Studies of 3D LiDAR semantic segmentation have recently achieved considerable development, especially in terms of …
A Point Cloud Dataset with Large Quantity of Dynamic Instances
In this paper, we propose the SemanticPOSS dataset, which contains 2988 various and complicated LiDAR scans with large quantity of dynamic instances. The data is collected in Peking University and uses the same data format as SemanticKITTI. In addition, we evaluate several typical 3D semantic segmentation models on our SemanticPOSS dataset. Experimental results show that SemanticPOSS can help to improve the prediction accuracy of dynamic objects as people, car in some degree.