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1
Introduction

1.1. Overview
We consider the problem of investigating the effect of controllers in thrust vector control for combustion
engine rockets.

In this project, we set our experiment object as a small-scale rocket prototype (as shown in Fig. 1.1)
whose engine is replaced by high-performance racing propeller. We are asked to design controllers to
complete tasks under simulated flying conditions involving designing regulators and tracking set points
with or without offset. Recursive feasibility and stability are two of the most significant indicators of a
reliable controller in this project. However, in practice, thrust vector control for engines is a complicated
nonlinear process which has many strict hardware limitations, hence we need to utilize a more advanced
engine controller.

1.2. Literature Review
Systematic optimization methods are ideal ways for this project. Several model-based controllers have
been used in combustion engine control tasks, such as the Linear Quadratic Regulator (LQR) controller
[1], Linear Quadratic Gaussian (LQG) controller [2], Sliding Model Controller (SMC) [3], and Model
Predictive Control (MPC) controller [4].

Figure 1.1: Rocket prototype studied in this project
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1.3. Problem Statement 2

Among these mode-based controllers, MPC is one of the most promising controllers that can deal
with the highly constrained nonlinear system. MPC can provide an optimal real-time solution for meet-
ing multi-objective goals while addressing system and operational constraints. New variants of MPC
utilize optimization solvers and packages that are suitable for the real-time operation of time-critical
systems.

1.3. Problem Statement
Given the MPC model to complete the project, we ask two key questions: (a) how we implement
practical MPC controllers in a highly nonlinear system? (b) given a target output reference, how we
tune inputs to regulate our system to the reference. And if there is unknown but constant disturbance,
i.e., gravity, how we design a robust controller to track the output reference?

The answer to (a) is simplifying the nonlinear system into several linear subsystems and controlling a
trimmed and linearized version of the rocket. More specifically, we are going to calculate a local steady-
state state and input pair that satisfies f(x0, u0) = 0. Then we compute the Jacobian matrix with respect
to states and inputs, and use it to derive the system dynamics equation according to Euler approximation,
x+ ≈ A(x− x0) +B(u− u0). Next, we do the tracking task by finding the optimal steady-state state
and input pair first, and then adjust the objective function of the MPC optimization problem in a delta
form, significantly, with a group of transformed constraints on the feasible set. To tackle the negative
influence from unknown disturbance, wemodel the disturbance into our system dynamics and introduce
a linear state and disturbance estimator to observe current states and disturbance. And then we adapt
the target condition accordingly to account for disturbance., which makes the realization of (b) feasible.

Usually, in order to understand this control process, modelling the system dynamics from physical
principles, which is out of the scope of this course, is a crucial step. In this project, we are going to
derive a 12-state dynamic system with the state vector x = [ωT ,ϕT ,vT ,pT ]T , where ω denotes the
angular velocities about the body axes. ϕ, v and p represent the Euler angles of the body frame, velocity
and position of the world frame. A four-dimensional input vector u = [δ1, δ2, Pavg, Pdiff ]

T regulates
states of the model in a nonlinear way, where δ1 and δ2 represents the deflection angles of servo 1 and
servo 2, Pavg = (P1 + P2)/2 is the average throttle and Pdiff = P2 − P1 is the throttle difference
between the motors.

1.4. Report Organization
This report is organized into two chapters. In Chapter 1, we present the main goals of the project
and reason that MPC controller is suitble in thrust vector control for the mini rocket in our project.
Meanwhile, we briefly discuss practical strategies about transforming complex nonlinear system into
several linear models and how to realize reliable tracking function with or without disturbance.

In Chapter 2, we propose implementation details about the design of MPC regulators and MPC
tracking controllers with or without offset using the linearized version of system. This section also
compares the performance of linear MPC controller and Nonlinear MPC controller in the tracking task.
Finally, we summarize our work in the last deliverable.



2
Deliverables

2.1. Deliverable 2-1
In this deliverable, we aim to decompose our linearized system into 4 subsystems such that we could
divide the task of controlling the rocket system into four sub tasks and assign each to an individual
controller.

First, we find the steady state of the system and linearize the system at this steady state (us, xs),
and then we look at matrix A acquired from the linearization step (in Eq. (2.1)),

A =

1 2 3 4 5 6 7 8 9 10 11 12



0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 3
1 0 0 0 0 0 0 0 0 0 0 0 4
0 1 0 0 0 0 0 0 0 0 0 0 5
0 0 1 0 0 0 0 0 0 0 0 0 6
0 0 0 0 9.81 0 0 0 0 0 0 0 7
0 0 0 −9.81 0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 0 0 0 0 0 0 9
0 0 0 0 0 0 1 0 0 0 0 0 10
0 0 0 0 0 0 0 1 0 0 0 0 11
0 0 0 0 0 0 0 0 1 0 0 0 12

(2.1)

the non zero entries in matrix A are entries (4, 1), (5, 2), (6, 3), (8, 4), (7, 5), (10, 7), (11, 8), (12, 9),
which means state pairs in these tuples are interrelated, therefore, the interrelated pairs be clustered into
4 groups:

• 4, 1, 8, 11 → α, ωx, vy, y

• 5, 2, 7, 10 → β, ωy, vx, x

• 6, 3 → γ, ωz

• 12, 9 → z, vz

Likewise, nonzero entries in matrix B (as shown in Eq. (2.2)) indicate the relationships between

3
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states and inputs,

B =

1 2 3 4



−55.68 0 0 0 1
0 −55.68 0 0 2
0 0 0 −0.104 3
0 0 0 0 4
0 0 0 0 5
0 0 0 0 6
0 9.81 0 0 7

−9.81 0 0 0 8
0 0 0.173 0 9
0 0 0 0 10
0 0 0 0 11
0 0 0 0 12

(2.2)

therefore, we can get the following 4 independent relationships (4 pairs of input/states):

• sys_x: δ2 → ωy, vx → β, ωy, vx, x

• sys_y: δ1 → ωx, vy → α, ωx, vy, y

• sys_z: Pavg → vz → z, vz

• sys_roll: Pdiff → ωz → γ, ωz

From an intuitive physical perspective, the independence between these four subsystems can be
explained as: the overall controlling effect can be regard as the superposition of the controlling effects
of these 4 subsystems, which is supported by the fact that each input can independently determine a set
of states, for example, deflection angle of servo 1 determines the angular velocity about body x axis,
rotation angle on x to transform world to body frame, speed and position on y axis.

2.2. Deliverable 3-1
In order to ensure the recursive constraint satisfaction in this project, we compute a positive invariant
set from the perspective of LQR control law and set up this invariant set as the terminal set that forces
the N -th step of the trajectory to fall within it. The MPC problem can be formulated as follows,

min
x,u

∑N−1
i=0 xTi Qxi + uTi Rui + xTNPxN

s.t. xi+1 = Axi +Bui
Cxi +Dui ≤ b
xN ∈ Xf

x0 = x

(2.3)

This terminal constraint brings the recursive feasibility into our MPC problem. The brief proof
of it follows: firstly, let [u∗0, u∗1, . . . , u∗N−1] be the optimal control sequence computed at x. At the
next state x+, there is at least a closed-loop trajectory whose first N-1 steps apply the previous inputs
[u∗1, u

∗
2, . . . , u

∗
N−1]. Because xN is inXf , theN -th input can be calculated as κf (x∗N ). The new feasible

input sequence [u∗1, u∗2, . . . , u∗N−1, κf (x
∗
N )] shows that the feasible set is not empty and thus ensures

the recursive constraint satisfaction of our MPC method.
The translation and rotation within a certain range (e.g., 5 meters shift along x, y, z, and 45◦ rotation

for roll) works with a relatively simple setup of parameters. As shown in the following table 2.1, R is
set to 1 to strengthen the control effect, and in order to better guide the trajectory to the regulation point,
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Table 2.1: Parameters for each subsystem in deliverable 3-1

Parameter Controller x Controller y Controller z Controller roll

Q 10× I4 10× I4 10× I2 10× I2
R 1 1 1 1
H 5 5 5 5

penalties Q equals to 10 × Inx, where nx is the number of states in each sub-system. And there is no
need to separate various penalty coefficients and tune each of them in a fine-grained way.

The parameters used in this deliverable are listed in
We calculate the terminal invariant set under the scheme of LQR method, where the optimal con-

troller u∗ = Kx. Thus, the controlled invariant set can be computed as an autonomous system. In
an iterative way, we calculate the pre-set of current feasible set and keep the intersection of both ar-
eas. Finally, this method will return a maximum invariant set as our terminal set Xf . Plots of terminal
invariant set for each of the dimensions are shown in Figs. 2.1 to 2.4.

Figure 2.1: Terminal invariant set for sub-system x

Figure 2.2: Terminal invariant set for sub-system y

Figure 2.3: Terminal invariant set for sub-system z Figure 2.4: Terminal invariant set for sub-system roll

Plots for each dimension starting stationary at 5 meters from the origin (for x, y, z) or stationary at
45◦ for roll are shown in Figs. 2.5 and 2.6,
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Figure 2.5: Control performance of subsystems x and y

Figure 2.6: Control performance of subsystems z and roll
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2.3. Deliverable 3-2
In this deliverable we aim to design the tracking system of our rocket so that the rocket could perform set
point tracking. We adopt the delta-formulation for tracking, the problem is converted into a regulation
problem as shown in Eq. (2.4)

min
∑N−1

i=0 ∆xTi Q∆xi +∆uTi R∆ui + Vf (∆xN )
s.t. ∆x0 = ∆x

∆xi+1 = A∆xi +B∆ui
Hx∆xi ≤ kx −Hxxs
Hu∆ui ≤ ku −Huus

(2.4)

To get the deltas of states and input we first compute the steady state and input for the reference
output under constraints as shown in Eq. (2.5) where the terminal cost is deterimined by terminal LQR.

min uTs Rsus

s.t.
[
I −A −B
C D

] [
xs
us

]
=

[
0
r

]
Hxxs ≤ kx
Huus ≤ ku

(2.5)

For each controller, we prioritize the states over the inputs, that is setting the parameter Q relatively
large compared to R. On top of that we also choose a relatively long horizon to ensure feasibility. The
parameters are the same as Table 2.1 and the performance of the tracking system is shown in Figs. 2.7
and 2.8.
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Figure 2.7: Tracking performance of subsystems x and y
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2.4. Deliverable 4-1
In this deliverable, we aim to combine our four controllers as well as their controlling effect in order to
tracking a given reference trajectory.

To do so, we first adopt the parameters we acquired in Section 2.2 (Table 2.1), the tracking perfor-
mance (Fig. 2.9) can not be described as good. As we can see, α and β violate the angle limitation a bit.
Tracking on z axis and γ is not swift.
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Therefore, we modify the parameters for better performance. R is decreased to allow stronger
control. Penalties for position are increased for better tracking trajectory. Also, more punishment for
ωx and ωy to avoid violation of angle limits. After several round of tuning, we get Fig. 2.10 using
parameters as shown in Table 2.2.
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Figure 2.10: Tracking performance using parameters after tweaking

Table 2.2: Parameters for deliverable 4-1

Parameter Value

H 5
Qx diag(40, 10, 1, 20)
Rx 0.1
Qy diag(40, 10, 1, 20)
Ry 0.1
Qz diag(1, 20)
Rz 0.1
Qroll diag(1, 20)
Rroll 0.1

2.5. Deliverable 5-1
In this deliverable, we aim to achieve offset-free tracking when a variable load is imposed on our rocket
system.

To do so, we modified the dynamics of mpc controller for the z subsystem by incorporating the
disturbances dk as Eq. (2.6),

xk+1 = Axk +Buk + Bddk︸ ︷︷ ︸
disturbance

yk = Cxk +Duk + Cddk

dk+1 = dk

(2.6)

where in our system we set Bd = B,C = [0, 1]T , D = 0, Cd = 0. The idea is that the state transition
is determined by current state, system input and system disturbance. Since the disturbance is unknown
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and we have no prior knowledge on the units of the input, we could set matrix Bd as a random matrix
that satisfies the observer rank requirement. As for matrix Cd, since we assume the output of the z
subsystem is the velocity of on z direction, therefore the matrix Cd is set as 0.

As for controller parameters, we tweaked a little bit on the basis of Section 2.2, the current parame-
ters for each controller is shown in Table 2.3.

Table 2.3: Parameters for deliverable 5-1

Parameter Value

H 5
Qx diag(40, 8, 1, 20)
Rx 0.1
Qy diag(40, 8, 1, 20)
Ry 0.1
Qz diag(1, 10)
Rz 0.1
Qroll diag(1, 10)
Rroll 0.1

In terms of observer parameters tweaking, we place the poles of the systemA+LC to [0.1, 0.2, 0.3]T
to ensure fast estimation process, even though it will bring relatively higher overshoot to the estimation.
(as shown in Fig. 2.11).

[
x̂k+1

d̂k+1

]
=

[
A Bd

0 1

] [
x̂k
d̂k

]
+

[
B
0

]
uk +

[
Lx

Ld

](
Cx̂k + Cdd̂k +Duk − yk

)
(2.7)

where x̂, d̂ are estimates of the state and disturbance. And the error dynamics now is,[
xk+1 − x̂k+1

dk+1 − d̂k+1

]
=

[
A Bd

0 1

] [
xk
dk

]
+

[
B
0

]
uk

−
[
A Bd

0 1

] [
x̂k
d̂k

]
−
[
B
0

]
uk −

[
Lx

Ld

](
Cx̂k + Cdd̂k − Cxk − Cddk

)
=

([
A Bd

0 1

]
+

[
Lx

Ld

] [
C Cd

]) [
xk − x̂k
dk − d̂k

]
(2.8)

The performance of our rocket system with/without offset-tracking is shown in Fig. 2.12, we then
test several disturbanceswith differentmagnitude, namely, 1.8 and 2.0, the results are shown in Figs. 2.13
and 2.14.
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Figure 2.11: Estimated disturbance when the load=1.783 under different pole placements of the estimator
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Figure 2.12: The rocket system under variance load with/without off-set free tracking
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Figure 2.13: Rocket system with/without offset-free tracking under load = 1.8
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Figure 2.14: Rocket system with/without offset-free tracking under load = 2.0

2.6. Deliverable 6-1
In this deliverable, we aim to design a Nonlinear MPC (NMPC) controller for the overall control of our
mini rocket.

First, we use the similar penalty parameters we used in Table 2.2, namely,

Q = diag(40, 40, 1, 10, 10, 20, 1, 1, 1, 20, 20, 20)
R = diag(0.1, 0.1, 0.1, 0.1)

We set up the problem with CasADi optimization solver with optimization goal and constraints shown
in Eq. (2.9).

min
∑N−1

i=0 (xi − xs)
TQ(xi − xs) + (ui − us)

TR(ui − us) + Vf (xN − xs)
s.t. x0 = x

xi+1 = fdiscrete(xi, ui)
Hxxi ≤ kx
Huui ≤ ku

(2.9)

In terms of terminal implementation, we designed two ways to achieve a similar result. One way
is to create steady state optimization variables and impose terminal state constraint on them and giving
them to the optimizer to solve, the other way is to design a terminal cost Vf via LQR by linearizing
the system at the steady point. While the rocket moves along the predefined trajectory, i.e. different
reference states, we get different steady points along the way, which means we need to compute the
terminal cost online. To accelerate calculation, we choose the linearization method which linearized the
system near the steady point, and discretize it. The parameters are the sameQ,Rwe chose as mentioned
for the terminal LQR controller. Terminal set is empty so we drop the terminal set constraint.

We useRunge-Kutta 4 as the discrete integration algorithm. u are constrained aswhat in the previous
sections. As for x, previously in linear MPC, we need to constrain them near the trim point to meet
the assumption that the system functions will be similar to that of trim point. Since NMPC covered the
whole state space, we don’t need these constraints anymore now. However, to avoid singularity, we set
|β| ≤ 85◦.

Nonlinear calculation is more computational expensive, so we decrease the time step to 0.1s. But
it still cost much more time to calculate comparing to linear one. It takes about 109s to compute a 30-
second trajectory, but linearMPC takes only about 23s. We found there’s no obvious difference between
the performance of 5-second-horizon one and 1-second-horizon one (Fig. 2.16), and 1-second-horizon
one takes about 18s. So we decide to use horizon of 1 second.
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Figure 2.15: NMPC performance with Horizon of 5 seconds(top) and of 1 seconds(bottom)

When the reference is far away from trim point, for example, if we use trajectory with maximum roll
of 50◦, linear controller will perform much worse(we re-tune theQmatrices a little to make it feasible).
It is because that when the rocket’s rolling angle is quite big, the difference of the system function
between the that of trim point and of current state is not neglectable, therefore, out of the controller’s
expectation, the system will not act as the controller predicted.
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Figure 2.16: Performance of Nonlinear MPC (top) and Liner MPC (bottom) with |γ| ≤ 50◦

Comparing to linear controllers, Nonlinear MPC controller 1) has larger feasible region since it does
not need the system to function within a short distance from the steady state, and it works directly on the
entire states so it’s applicable for the whole state space. 2) is much more computationally expensive. To
solve nonlinear optimization problem, we have to discretize the system functions, calculate the Jacobian
matrices, and deal with the 4 tangled subsystems at meantime. These have to be done online. 3) can
work without linearizing in advance and decomposing or merging in the controlling process. 4) can be
tricky and challenging to debug if numerical issues or local optima exist.
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